Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
PLoS One ; 19(1): e0296133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38170733

RESUMO

Cell formation (CF) and machine cell layout are two critical issues in the design of a cellular manufacturing system (CMS). The complexity of the problem has an exponential impact on the time required to compute a solution, making it an NP-hard (complex and non-deterministic polynomial-time hard) problem. Therefore, it has been widely solved using effective meta-heuristics. The paper introduces a novel meta-heuristic strategy that utilizes the Genetic Algorithm (GA) and the Technique of Order Preference Similarity to the Ideal Solution (TOPSIS) to identify the most favorable solution for both flexible CF and machine layout within each cell. GA is employed to identify machine cells and part families based on Grouping Efficiency (GE) as a fitness function. In contrast to previous research, which considered grouping efficiency with a weight factor (q = 0.5), this study utilizes various weight factor values (0.1, 0.3, 0.7, 0.5, and 0.9). The proposed solution suggests using the TOPSIS technique to determine the most suitable value for the weighting factor. This factor is critical in enabling CMS to design the necessary flexibility to control the cell size. The proposed approach aims to arrange machines to enhance GE, System Utilization (SU), and System Flexibility (SF) while minimizing the cost of material handling between machines as well as inter- and intracellular movements (TC). The results of the proposed approach presented here show either better or comparable performance to the benchmark instances collected from existing literature.


Assuntos
Algoritmos , Indústrias , Humanos , Heurística
2.
Comput Biol Med ; 168: 107723, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38000242

RESUMO

Reliable and accurate brain tumor segmentation is a challenging task even with the appropriate acquisition of brain images. Tumor grading and segmentation utilizing Magnetic Resonance Imaging (MRI) are necessary steps for correct diagnosis and treatment planning. There are different MRI sequence images (T1, Flair, T1ce, T2, etc.) for identifying different parts of the tumor. Due to the diversity in the illumination of each brain imaging modality, different information and details can be obtained from each input modality. Therefore, by using various MRI modalities, the diagnosis system is capable of finding more unique details that lead to a better segmentation result, especially in fuzzy borders. In this study, to achieve an automatic and robust brain tumor segmentation framework using four MRI sequence images, an optimized Convolutional Neural Network (CNN) is proposed. All weight and bias values of the CNN model are adjusted using an Improved Chimp Optimization Algorithm (IChOA). In the first step, all four input images are normalized to find some potential areas of the existing tumor. Next, by employing the IChOA, the best features are selected using a Support Vector Machine (SVM) classifier. Finally, the best-extracted features are fed to the optimized CNN model to classify each object for brain tumor segmentation. Accordingly, the proposed IChOA is utilized for feature selection and optimizing Hyperparameters in the CNN model. The experimental outcomes conducted on the BRATS 2018 dataset demonstrate superior performance (Precision of 97.41 %, Recall of 95.78 %, and Dice Score of 97.04 %) compared to the existing frameworks.


Assuntos
Neoplasias Encefálicas , Processamento de Imagem Assistida por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Neoplasias Encefálicas/diagnóstico por imagem , Algoritmos , Encéfalo , Imageamento por Ressonância Magnética/métodos
3.
Heliyon ; 9(12): e22733, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38125529

RESUMO

Generalized Vehicle Routing Problem (GVRP) is a challenging operational research problem which has been widely studied for nearly two decades. In this problem, it is assumed that graph nodes are grouped into a number of clusters, and serving any node of a cluster eliminates the need to visit the other nodes of that cluster. The general objective of this problem is to find the set of nodes to visit and determine the service sequence to minimize the total traveling cost. In addition to these general conditions, GVRP can be formulated with different assumptions and constraints to practically create different sub-types and variants. This paper aims to provide a comprehensive survey of the GVRP literature and explore its various dimensions. It first encompasses the definition of GVRP, similar problems, mathematical models, classification of different variants and solution methods developed for GVRPs, and practical implications. Finally, some useful suggestions are discussed to extend the problem. For this review study, Google Scholar, Scopus, Science Direct, Emerald, Springer, and Elsevier databases were searched for keywords, and 160 potential articles were extracted, and eventually, 45 articles were judged to be relevant.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38129729

RESUMO

This study proposes a decision support framework (DSF) based on two data envelopment analysis (DEA) models in order to evaluate the urban road transportation of countries for sustainable performance management during different years. The first model considers different years independently while the second model, which is a type of network model, takes into account all the years integrated. A multi-objective programming model under two types of uncertainties is then developed to solve the proposed DEA models based on a revised multi-choice goal programming (GP) approach. The efficiency scores are measured based on the data related to several major European countries and the factors including the level of freight and passenger transportation, level of greenhouse gas emissions, level of energy consumption, and road accidents which are addressed as the main evaluation factors. Eventually, the two proposed models are compared in terms of interpretation and final achievements. The results reveal that the efficiency scores of countries are different under deterministic/uncertain conditions and according to the structure of the evaluation model. Furthermore, efficiency changes are not necessarily the same as productivity changes. The high interpretability (up to 99.6%) of the models demonstrates the reliability of DSF for decision-making stakeholders in the transport sector. Furthermore, a set of managerial analyses is conducted based on different parameters of the performance evaluation measures for these countries including the productivity changes during the period under consideration, resilience of the countries, detection of the benchmark countries, ranking of different countries, and detection of the patterns for improving the transportation system.

6.
Artif Intell Rev ; : 1-34, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37362884

RESUMO

Smart agriculture is gaining a lot of attention recently, owing to technological advancement and promotion of sustainable habits. Unmanned aerial vehicles (UAVs) play a crucial role in smart agriculture by aiding in different phases of agriculture. The contribution of UAVs to sustainable and precision agriculture is a critical and challenging issue to be taken into account, particularly for smallholder farmers in order to save time and money, and improve their agricultural skills. Thence, this study targets to propose an integrated group decision-making framework to determine the best agricultural UAV. Previous studies on UAV evaluation, (i) could not model uncertainty effectively, (ii) weights of experts are not methodically determined; (iii) importance of experts and criteria types are not considered during criteria weight calculation, and (iv) personalized ranking of UAVs is lacking along with consideration to dual weight entities. Herein, nine critical selection criteria are identified, drawing upon the relevant literature and experts' opinions, and five extant UAVs are considered for evaluation. To circumvent the gaps, in this work, a new integrated framework is developed considering q-rung orthopair fuzzy numbers (q-ROFNs) for apt UAV selection. Specifically, methodical estimation of experts' weights is achieved by presenting the regret measure. Further, weighted logarithmic percentage change-driven objective weighting (LOPCOW) technique is formulated for criteria weight calculation, and an algorithm for personalized ranking of UAVs is presented with visekriterijumska optimizacija i kompromisno resenje (VIKOR) approach combined with Copeland strategy. The findings show that the foremost criteria in agricultural UAV selection are "camera," "power system," and "radar system," respectively. Further, it is inferred that the most promising UAV is the DJ AGRAS T30. Since the applicability of UAV in agriculture will get inevitable, the developed framework can be an effective decision support system for farmers, managers, policymakers, and other stakeholders.

8.
Environ Sci Pollut Res Int ; 30(21): 60367-60382, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37022553

RESUMO

Due to the growing population and demand, transportation planning has received special importance in the context of supply chain management. One of the major challenges in transportation planning is the traffic problem. This challenge affects the safety, environmental, and efficiency factors of transportation systems. Accordingly, in this study, the routes, which are important pillars of transportation planning, are examined from the perspective of sustainability. In this regard, a novel decision support system is developed, wherein at first, some decision-making methods including Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), entropy technique, Nash equilibrium point (NEP), and data envelopment analysis (DEA) are employed to analyze and determine unstable routes. Then, a bi-level leader-follower multi-objective optimization model is developed, based on the vehicle types, to evaluate the routes at different time intervals and identify the most efficient time intervals as a traffic pattern. Finally, the proposed models are implemented in a real case study based on the freeways in Tehran. According to the main finding, it is revealed that heavier and bulkier vehicles have a greater impact on road instability.


Assuntos
Desenvolvimento Sustentável , Meios de Transporte , Irã (Geográfico)
9.
Sci Rep ; 13(1): 3928, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894678

RESUMO

With the development of communication infrastructure, the design of supply chains has changed significantly. Blockchain technology, as one of the most cutting-edge technologies, can promote transparency among members of the supply chain network. To the best of our knowledge, this is the first study that tries to develop a novel bi-objective optimization model to integrate the transparency resulting from the use of blockchain for designing a three-level supply chain network. The first objective function is to minimize total cost while the second objective function seeks to maximize transparency based on the application of blockchain technology. Moreover, it is worth noting that it is the first attempt to investigate the role of a blockchain model under stochastic conditions. The bi-objectiveness and stochastic nature of the proposed model are then treated using Fuzzy Goal Programming (FGP) and Chance-Constrained programming (CCP) approaches, respectively. To tackle the problem, an improved Branch and Efficiency (B&E) algorithm is developed by incorporating transparency along with cost and service. The impacts of blockchain exclusively through transparency (Case 1) or through transparency, cost, and benefits (Case 2) in Supply Chain Design (SCD) are compared. The results demonstrated that the first case has less computational complexity and better scalability, while the second case has more transparency, less congestion, and more security. As one of the main implications, supply chain managers who are focused on cost minimization as well as transparency maximization are advised to take into account the trade-off between featuring costs and benefits of blockchain technology.

10.
Ann Oper Res ; 324(1-2): 189-214, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35068644

RESUMO

Municipal solid waste (MSW) management is known as one of the most crucial activities in municipalities that requires large amounts of fixed/variable and investment costs. The operational processes of collection, transportation and disposal include the major part of these costs. On the other hand, greenhouse gas (GHG) emission as environmental aspect and citizenship satisfaction as social aspect are also of particular importance, which are inevitable requirements for MSW management. This study tries to develop a novel mixed-integer linear programming (MILP) model to formulate the sustainable periodic capacitated arc routing problem (PCARP) for MSW management. The objectives are to simultaneously minimize the total cost, total environmental emission, maximize citizenship satisfaction and minimize the workload deviation. To treat the problem efficiently, a hybrid multi-objective optimization algorithm, namely, MOSA-MOIWOA is designed based on multi-objective simulated annealing algorithm (MOSA) and multi-objective invasive weed optimization algorithm (MOIWOA). To increase the algorithm performance, the Taguchi design technique is employed to set the parameters optimally. The validation of the proposed methodology is evaluated using several problem instances in the literature. Finally, the obtained results reveal the high efficiency of the suggested model and algorithm to solve the problem.

11.
Socioecon Plann Sci ; 85: 101452, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36275860

RESUMO

Since human health greatly depends on a healthy and risk-free social environment, it is very important to have a concept to focus on improving epidemiology capacity and potential along with economic perspectives as a very influential factor in the future of societies. Through responsible behavior during an epidemic crisis, the health system units can be utilized as a suitable platform for sustainable development. This study employs the Best-Worst Method (BWM) in order to develop a system for identifying and ranking health system units with understanding the nature of the epidemic to help the World Health Organization (WHO) in recognizing the capabilities of resilient health system units. The purpose of this study is to identify and prioritize the resilient health system units for dealing with Coronavirus. The statistical population includes 215 health system units in the world and the opinions of twenty medical experts are also utilized as an informative sample to localize the conceptual model of the study and answer the research questionnaires. The resilient health system units of the world are identified and prioritized based on the statistics of "Total Cases", "Total Recovered", "Total Deaths", "Active Cases", "Serious", "Total Tests" and "Day of Infection". The present descriptive cross-sectional study is conducted on Worldometer data of COVID-19 during the period of 17 July 2020 at 8:33 GMT. According to the results, the factors of "Total Cases", "Total Deaths", "Serious", "Active Cases", "Total Recovered", "Total Tests" and "Day of Infection" are among the most effective ones, respectively, in order to have a successful and optimal performance during a crisis. The attention of health system units to the identified important factors can improve the performance of epidemiology system. The WHO should pay more attention to low-resilience health system units in terms of promoting the health culture in crisis management of common viruses. Considering the importance of providing health services as well as their significant effect on the efficiency of the world health system, especially in critical situations, resilience analysis with the possibility of comparison and ranking can be an important step to continuously improve the performance of health system units.

12.
Socioecon Plann Sci ; 85: 101439, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36164508

RESUMO

In uncertain circumstances like the COVID-19 pandemic, designing an efficient Blood Supply Chain Network (BSCN) is crucial. This study tries to optimally configure a multi-echelon BSCN under uncertainty of demand, capacity, and blood disposal rates. The supply chain comprises blood donors, collection facilities, blood banks, regional hospitals, and consumption points. A novel bi-objective Mixed-Integer Linear Programming (MILP) model is suggested to formulate the problem which aims to minimize network costs and maximize job opportunities while considering the adverse effects of the pandemic. Interactive possibilistic programming is then utilized to optimally treat the problem with respect to the special conditions of the pandemic. In contrast to previous studies, we incorporated socio-economic factors and COVID-19 impact into the BSCN design. To validate the developed methodology, a real case study of a Blood Supply Chain (BSC) is analyzed, along with sensitivity analyses of the main parameters. According to the obtained results, the suggested approach can simultaneously handle the bi-objectiveness and uncertainty of the model while finding the optimal number of facilities to satisfy the uncertain demand, blood flow between supply chain echelons, network cost, and the number of jobs created.

13.
J Environ Manage ; 328: 116892, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36529005

RESUMO

Configuration of sustainable supply chains for agricultural products has been a well-known research field recently which is continuing to evolve and grow. It is a complex network design problem, and despite the abundant literature in the field, there are still few models offered to integrate social impacts and environmental effects to support network design decision-making to support the configuration of the citrus supply chain. In this work, the citrus supply chain design problem is investigated by integrating the production, distribution, inventory control, recycling and locational decisions in which the triple bottom lines of sustainability, as well as circularity strategy, are addressed. Accordingly, a novel multi-objective Mixed-Integer Linear Programming (MILP) model is proposed to formulate a multi-period multi-echelon problem to design the sustainable citrus Closed-Loop Supply Chain (CLSC) network. To solve the developed model, the ε-constraint approach is employed in small-sized problems. Furthermore, Strength Pareto Evolutionary Algorithm II (SPEA-II) and Pareto Envelope-based Selection Algorithm II (PESA-II) algorithms are used in medium- and large-sized problems. Taguchi design technique is then utilized to adjust the parameters of the algorithms efficiently. Three well-known assessment metrics and convergence analysis are regarded to test the efficiency of the suggested algorithms. The numerical results demonstrate that the SPEA-II algorithm has a superior efficiency over PESA-II. Moreover, to validate the applicability of the developed methodology, a real case study in Mazandaran/Iran is investigated with the help of a set of sensitivity analyses.


Assuntos
Algoritmos , Irã (Geográfico)
14.
Comput Biol Med ; 152: 106405, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36512875

RESUMO

BACKGROUND: Brain cancer is a destructive and life-threatening disease that imposes immense negative effects on patients' lives. Therefore, the detection of brain tumors at an early stage improves the impact of treatments and increases the patients survival rates. However, detecting brain tumors in their initial stages is a demanding task and an unmet need. METHODS: The present study presents a comprehensive review of the recent Artificial Intelligence (AI) methods of diagnosing brain tumors using MRI images. These AI techniques can be divided into Supervised, Unsupervised, and Deep Learning (DL) methods. RESULTS: Diagnosing and segmenting brain tumors usually begin with Magnetic Resonance Imaging (MRI) on the brain since MRI is a noninvasive imaging technique. Another existing challenge is that the growth of technology is faster than the rate of increase in the number of medical staff who can employ these technologies. It has resulted in an increased risk of diagnostic misinterpretation. Therefore, developing robust automated brain tumor detection techniques has been studied widely over the past years. CONCLUSION: The current review provides an analysis of the performance of modern methods in this area. Moreover, various image segmentation methods in addition to the recent efforts of researchers are summarized. Finally, the paper discusses open questions and suggests directions for future research.


Assuntos
Inteligência Artificial , Neoplasias Encefálicas , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo/patologia
15.
Comput Biol Med ; 152: 106443, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36563539

RESUMO

The Global Cancer Statistics 2020 reported breast cancer (BC) as the most common diagnosis of cancer type. Therefore, early detection of such type of cancer would reduce the risk of death from it. Breast imaging techniques are one of the most frequently used techniques to detect the position of cancerous cells or suspicious lesions. Computer-aided diagnosis (CAD) is a particular generation of computer systems that assist experts in detecting medical image abnormalities. In the last decades, CAD has applied deep learning (DL) and machine learning approaches to perform complex medical tasks in the computer vision area and improve the ability to make decisions for doctors and radiologists. The most popular and widely used technique of image processing in CAD systems is segmentation which consists of extracting the region of interest (ROI) through various techniques. This research provides a detailed description of the main categories of segmentation procedures which are classified into three classes: supervised, unsupervised, and DL. The main aim of this work is to provide an overview of each of these techniques and discuss their pros and cons. This will help researchers better understand these techniques and assist them in choosing the appropriate method for a given use case.


Assuntos
Neoplasias da Mama , Aprendizado Profundo , Neoplasias Mamárias Animais , Humanos , Animais , Feminino , Mamografia/métodos , Aprendizado de Máquina , Neoplasias da Mama/patologia , Diagnóstico por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos
16.
PeerJ Comput Sci ; 9: e1666, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38192452

RESUMO

Early identification of false news is now essential to save lives from the dangers posed by its spread. People keep sharing false information even after it has been debunked. Those responsible for spreading misleading information in the first place should face the consequences, not the victims of their actions. Understanding how misinformation travels and how to stop it is an absolute need for society and government. Consequently, the necessity to identify false news from genuine stories has emerged with the rise of these social media platforms. One of the tough issues of conventional methodologies is identifying false news. In recent years, neural network models' performance has surpassed that of classic machine learning approaches because of their superior feature extraction. This research presents Deep learning-based Fake News Detection (DeepFND). This technique has Visual Geometry Group 19 (VGG-19) and Bidirectional Long Short Term Memory (Bi-LSTM) ensemble models for identifying misinformation spread through social media. This system uses an ensemble deep learning (DL) strategy to extract characteristics from the article's text and photos. The joint feature extractor and the attention modules are used with an ensemble approach, including pre-training and fine-tuning phases. In this article, we utilized a unique customized loss function. In this research, we look at methods for detecting bogus news on the internet without human intervention. We used the Weibo, liar, PHEME, fake and real news, and Buzzfeed datasets to analyze fake and real news. Multiple methods for identifying fake news are compared and contrasted. Precision procedures have been used to calculate the proposed model's output. The model's 99.88% accuracy is better than expected.

17.
Ann Oper Res ; : 1-25, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36533275

RESUMO

Cost management is a key step to the success of any logistics system and supply chain management. Inventory costs are an important part of logistics costs which are highly affected by economic factors such as demand growth rate (DGR), interest rate ( i r ), and inflation rate ( e ). Analyzing the interactive effects of these economic factors plays a key role in preventing failures of logistics systems This study aims to develop a novel mathematical model and investigate the interactive effects of these factors on the behavior of retailers in Iran. To the best of our knowledge, this is the first time that the sale price is defined as a function of time and inflation rate where the demand rate is built up with a linear function of time. Different scenarios and sub-scenarios are then taken into consideration based on different combinations of factors and assumptions. As the main findings of the study, it is revealed that if e ≤ 18 % or i r ≥ 40.52 % , holding costs are much higher than buying costs, and retailers are reluctant to invest in inventories. Given that DGR is independent of the inflation rate, and also if e ≥ 20.45 % or i r ≤ 31.9 % , then DGR fluctuations have no impact on the total cost. Hence, in this case, buying costs are much higher than holding costs, and retailers are eager to invest in inventories instead of bank deposits. Furthermore, it is concluded that decision-makers can use the interest rate as leverage to set the probability of shortages and hoardings. Finally, some useful future research directions are discussed based on the main limitations of the study.

19.
Environ Sci Pollut Res Int ; 29(44): 66979-67001, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35513621

RESUMO

Global supply chains are increasingly becoming complex by having numerous suppliers around the world. To manage this complexity, organizations must identify the optimum number of suppliers. There have been many examples in the literature that used different approaches to solve this problem. Despite the importance of this issue, less attention has been paid to it and managers of the companies do not know how, and based on which approach and criteria, they should determine the optimal number of suppliers which leads to lower cost and higher reliability of the production line. Therefore, in this study, a hybrid methodology is proposed to expose the process of this problem which helps managers to learn how they can determine the optimal number of suppliers. We address this gap by developing an integrated approach based on multi-criteria decision-making (MCDM) comprising best-worst method (BWM), simple additive weighting (SAW), and technique for order preference by similarity to ideal solution (TOPSIS), and simulation to determine the optimal number of suppliers. This study utilizes a comprehensive approach based on leagile and environmentally sustainable criteria to determine the optimal number of suppliers. To examine the efficiency of the proposed approach, an empirical case study is conducted in an Iranian oil company. The final results represent that the scenario with a 1-1-1 arrangement (one supplier for each type of equipment) is the best possible scenario to determine the optimal number of leagile-sustainable suppliers. To examine the reliability and robustness of the obtained results, a sensitivity analysis based on the three most important criteria is conducted. Finally, discussions on the findings as well as theoretical and managerial implications are presented.


Assuntos
Reprodutibilidade dos Testes , Irã (Geográfico)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...